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LIQUID CRYSTALS, 1996, VOL. 20, No. 6, 697-704 

Theoretical study of layer alignment in shear flow of smectic A 
liquid crystals 

by T. CARLSSON* 
Physics Department, Chalmers University of Technology, S-412 96 Goteborg, 

Sweden 
and F. M. LESLIE 

Department of Mathematics, University of Strathclyde, Livingstone Tower, 
26 Richmond Street, Glasgow G1 lXH, Scotland 

(Received 18 September 1995; accepted 18 December 1995) 

This paper presents a theoretical study of the behaviour of smectic A liquid crystals subject 
to shear flow. The liquid crystal is assumed to consist of uniform, planar smectic layers, on 
which no external moments and no external boundary conditions have been imposed. It is 
shown that of the five viscosity coefficients needed for a full description of dynamical 
behaviour of the S, phase, only two, i1 and ,I4, enter the expression of the shearing torque. 
A stability analysis establishes the possible flow alignment configurations of the smectic layers, 
and the geometrical arrangements of the flow aligned smectic layers are depicted, parametrized 
by the crucial parameter 1,/,14. Finally, the effective viscosities of the system are derived for 
some fundamental orientations of the smectic layers with respect to the shear plane, and these 
allow the derivation of a few inequalities that the viscous coefficients should satisfy. 

1. Introduction 
The director dynamics of the ferroelectric smectic C* 

( S z )  phase have been studied intensively during the past 
decade. Only recently, however, have the hydrodynamic 
equations of the S z  phase become available in the 
literature through the work by Leslie et al. [l]. Based 
on this theory, Carlsson et al. have investigated the flow 
properties of the SE phase, assuming that boundary 
conditions, keeping the smectic layers fixed in space and 
time, are imposed on the sample [2-41. In reality, under 
some circumstances, such boundary conditions might 
not exist and the layers will start rotating under the 
influence of a macroscopic flow. The general analysis of 
this situation turns out to be rather complicated due to 
the coupling between the rotation of the smectic layer 
normal and the rotation of the director along the smectic 
cone. For this reason, in this work we study the rotation 
of the smectic layers of a smectic A (S,) liquid crystal 
subject to shear flow, in order to obtain some knowledge 
of how the smectic layers may behave in shear flow. We 
assume throughout the work that the liquid crystal 
consists of uniform, planar smectic layers, on which no 
external moments and no external boundary conditions 
have been imposed. 

The outline of the paper is as follows. $2 gives the 

*Author for correspondence. 

basic dynamic equations, needed for the present analysis, 
including a description of the viscous torque. This section 
also includes a description of how one of the basic 
equations can be interpreted as a balance of torque 
equation. tj 3 introduces the coordinates used to  describe 
the system, and also derives the governing equations for 
the present problem. We show that only two viscous 
coefficients, denoted 1, and A4, enter the equations. It is 
also shown, using thermodynamical reasoning, that the 
coefficient A4 must be positive. In $ 4  we demonstrate 
that for some orientations of the smectic layers, the 
viscous torque vanishes. These orientations define the 
possible candidates for what one might call the layer 
flow alignment angles. In $ 5  we discuss the stability of 
these flow alignment angles, showing that their stability 
is determined by the ratio A1/A4. Comparing our results 
with the behaviour of disc-like nematics in shear flow, 
we propose in $4 what we believe is a reasonable 
assumption for the value of the ratio A1/A4. Finally, $7  
gives a derivation of the effective viscosities of the system 
for some geometries of the flow, using the results to 
derive some additional inequalities for the viscous 
coefficients. 

2. Basic equations: the smectic A stress tensor 
In this work we study the dynamics of a S, liquid 

crystal, describing the layer normal by a unit vector a. 
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698 T. Carlsson and F. M. Leslie 

Assuming that the system is free from dislocations and 
of constant layer thickness, the layer normal a must 
fulfill the constraint [ S ]  

V x a = O .  (1) 

When studying the transport of matter in the system, 
the liquid crystal is considered to be incompressible, and 
the velocity field v is subject to the constraint 

v.v=o.  (2) 

Apart from this constraint, we allow for any type of flow 
in the analysis, i.e. we also consider the situation where 
matter is transported not only within the smectic layers, 
but also between them. 

The continuum theory for the S ,  phase can be written 
down as a special case of that recently proposed by 
Leslie et ul. [I 1, 21 for the S, phase, simply putting the 
c-director equal to zero. Given the assumptions of 
constant layer thickness and imcompressibility, the con- 
tinuum theory essentially rests on two balance laws for 
linear and angular momentum, namely 

p d i  = Fi + tij,,j, (3) 

(4) 

where F and r denote external body force and moment 
per unit volume, and tij and I i j  the stress and couple 
stress tensors, respectively. Given the constraints the 
latter can be expressed as 

rl + C i j k t k j  + l i j , j  = 0, 

the pressure p arising from the assumed incompressibility 
and the vector p stemming from the constraints imposed 
on the smectic layers. Furthermore, fij and rij denote 
dynamic contributions, iij being proven to be zero [ 11, 
while M’ is the elastic energy of the system given by [S]  

IV = tK(V * a)2. ( 7 )  
In this work we consider a S, liquid crystal, consisting 

of uniform, planar smectic layers, on which no external 
moments and no external boundary conditions have 
been imposed. Thus the elastic energy w equals zero 
throughout the sample. The vector p which is related to 
the external torque imposed on the system [ a ]  will also 
vanish in this case. Thus equations (3)-(6) reduce to 

(8) 

(9) 

pd. = F. + f.. . 
I I 1 J . J ’  

E . .  1 J k  f k J  .-o. 
Studying a simple shear flow, equation (8) can be used 
to calculate the external force, acting on the moving 

plate, necessary to maintain the flow, while equation (9), 
which can be interpreted as a balance of torque equation, 
is the equation governing the behaviour of the smectic 
layer normal. This is the main equation studied in 
this work. 

Before writing down the S4 stress tensor we introduce 
the rate of strain and vorticity tensors 

D i j  = t- I I j , i ) ,  (10) 

W . = f ( p  1J - 1 . J  .--p.), J . 1  (11) 

and the vector A related to the material time derivative 
of the unit vector a 

A i  = u, - I q k U k .  (12) 

Also we find it convenient to employ the notation 

Dl = D..a .  1.1 J . (13) 

With these definitions the dynamic part of the S, stress 
tcnsor can be written [ 1, 21 

f . . = f ? , + f ? .  1J ‘ I  1J’ (14) 

where 

cj = poDi j  + p1 u,D~uiuj  + p2(D;uj  + DYai) 

+ A , ( A i U j  + Ajai)  ( 1 5 )  

is the symmetric part of the stress tensor and 

c j = i I ( D ; u j -  D : u j ) + & ( A j ~ i - A ; ~ j )  (16) 

is the antisymmetric part. We also remind the reader 
that the usual summation convention is adopted 
throughout this work. 

With the interpretation of equation (9) as a balance 
of torque equation, we introduce the viscous torque rV 
according to 

F == p t + TT I = &. i l k  . fa. !i3. (17) 

In equation (17) the viscous torque has been divided 
into two parts: the shearing torque rs which is the 
torque acting on the layer normal due to velocity 
gradients, and the rotational torque r’ which is the 
torque appearing whenever the layer normal is rotat- 
ing. From the form of r;j, equation (16), we notice that 
only two viscosities enter the problem, I., and 1,. We 
show later (cf. 3 3.3) that stability reasons demand the 
coefficient 2, to be positive, 

i4 > 0. (18)  

3. The shear flow geometry: definition of coordinates 
and derivation of the governing equations 

3.1. Presentution of the problem and definition of the 
coordinates 

In  this work we study the shear flow of a S, liquid 
crystal, assumed to be confined between two parallel 
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699 Layer alignment in shear flow of S, LC 

glass plates, distance d apart. The coordinates needed to 
define the problem are introduced in figure 1. The glass 
plates are taken to be parallel to the xy-plane, one of 
them being at rest while the other one is moving in the 
y-direction with the velocity uo, implying the velocity 
field to be of the form 

(19) u, = 0, up = u(z), u, = 0 

The smectic planes are assumed to be uniform and 
planar, the layer normal being defined by a unit vector 
a. We thus expect a uniform shear rate duldz = u' = uo jd  
to be present everywhere in the sample. Furthermore, 
we do not impose any boundary conditions on the 
smectic layers, leaving the layer normal free to orient 
itself in any arbitrary direction. 

The orientation of a can be described by using a 
spherical polar coordinate system (r, $ ,a)  as depicted in 
figurel. The angle t) is an angle between a and the 
y-axis, while a is the angle which the projection of the 
layer normal onto the xz-plane makes with the x-axis, 
counting a positive for rotations around the positive 
y-axis. With these definitions, a can be written as 

a = i sin $ cos a +  jcos  t) - i sin t) sin a (20) 

Associated with the coordinate system introduced above 
there belongs a set of bases vectors, i, Y and &, 

i = 2 sin$ cosa + j cos  t) -$sin t) sin a 

9 = i cos  t) cos a -  j sin t) - fcos t) sin a 

(21 a) 

(21 b) 

& =  -2sina-2cosa (21 c) 

When projecting a torque acting on the layer normal 
along these bases vectors, i.e. by writing r =  
cf + r*Y + r,&, one can give the following interpreta- 
tion of the physical meaning of the spherical polar 

X 

Figure 1. Definition of coordinates. The liquid crystal is 
confined between two glass plates, both parallel to the 
xy-plane. The upper one is moving in the y-direction, thus 
creating a velocity field v = V(Z)$ in the liquid crystal. The 
orientation of the layer normal a is described by the polar 
angles + and a, where $ is the angle between a and the 
y-axis, while CL is the angle which the projection of the 
layer normal onto the xz-plane makes with the x-axis, 
counting 2 positive for rotations around the positive 
y-axis. 

components of r [6]. The component acts to rotate 
a around itself and will not influence the behaviour of 
the system. We will indeed show later that for all torques 
being calculated, the component will identically equal 
zero. A torque component r, tends to rotate the layer 
normal around the Y-axis, a rotation which decreases a 
keeping t) constant. Correspondingly, a torque rotates 
the layer normal around the &-axis, a rotation which 
increases t) while keeping a constant. 

Finally, in order to achieve a feeling for how different 
layer orientations correspond to a specific choice of 
coordinates (+,a), study the right hand part of figure 1. 
When t) is zero, the layers are standing up in the 
bookshelf geometry, the layer normal being parallel to 
the motion of the moving plate. Increasing t), the layer 
normal will gradually make a larger angle to this direc- 
tion. For t) equal to n/2, the layer normal will be 
perpendicular to the shearing direction, a being defined 
by the figure. This is the case when the flow does not 
necessitate any transport of matter from one layer to 
another. 

3.2. The rotational torque 
Neglecting the inertia of the system, the balance law 

for angular momentum is given by equation (9). As was 
discussed at the end of $2, this equation can be inter- 
preted as a balance of torque equation, where the torque 
furthermore can be divided into one part which is due 
to the rotational motion of the layers, while the other 
part is due to velocity gradients. Retaining only the 
terms which remain in the absence of velocity gradients, 
the rotational part of the antisymmetric stress tensor 
(16) is written 

e; = i4(ujai - uiaj). (22) 

Substituting the expression of a given by equation (20) 
into equation (22), the rotational torque is calculated 
from equation ( 17 j 

F, = 2&($ sin a +  cisin $ cos t) cos a), (23 a) 

rf = - 2i14ci sin2 t), (23 bj 

r: = an4($ cos a - c i  sin # cos $ sin a). (23 c) 

The spherical polar components of the rotational torque 
are now readily calculated from equations (21) and (23) 

r: = r - 3  = 0, (24 4 
(24 b) 

r:,=r.&= -2~~11/.  (24 4 
r; = r - 4  = 2n4cisint), 

One notices that r: is zero, a result which is expected 
due to the symmetry of the system. As was discussed 
before, a rotation for which a decreases corresponds to 
a rotation around the positive #-axis. The rotational 
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700 T. Carlsson and F. M. Leslie 

torque is a dissipative one, and must act to oppose any 
rotation, thus becoming negative in this case. From 
equation (24 b) it can be seen that for r$ to be negative 
when also oi is negative, one must demand j., to be 
positive. In the same manner, one observes that a 
rotation for which I) increases corresponds to a rotation 
around the positive a-axis, thus demanding the corres- 
ponding rotational torque to be negative. This again 
leads to the conclusion that A, must be positive by 
inspection of equation (24c). Thus the condition A, be 
positive is a necessary one for the system to be stable, 
otherwise a fluctuation of the layer normal a would 
increase exponentially with a corresponding negative 
entropy production as a consequence. From the above 
discussion we also realise that ,I4 can be regarded as the 
rotational viscosity of the smectic layers. 

3.3. The shearing torque 
We now calculate the shearing torque, which is the 

torque acting on the layer normal if velocity gradients 
are present in the system. The set up of the shear flow 
is shown in figure 1, the velocity field and the layer 
normal being given by equations (19) and (20), respect- 
ively. Setting & and c i  equal to zero, we obtain from 
equations (16), (17), (19) and (20), 

r;= [-(A, +i,)cos2I) +(A1 -lu,)sin2$sin2a]v',(25aj 

(25  b) 

(25 c) 

r; = (i, + I-,) sin t,b cos I) cos x u', 

r; = (i, ~ i,, j sin2 I) sin x cos a 2". 

From cquations (21) and (25) one can calculate the 
spherical polar components of the shearing torque as 

One notices that the r-component of this torque is zero 
as expected. Furthermore, the physical interpretation of 
the torque components r; and rz is that a positive 
torque component T; will rotate the smectic Iayer 
normal in such a way that a decreases, while a positive 
torque component r; will act to increase I). 

3.4. The gouerning equations 
The governing equations of the system are the two 

equations for t,b and x determining the time evolution of 
the layer normal when the liquid is being subject to 
shear. These equations can be written down by summing 
up the total torque acting on the layer normal, and 
demanding that this be zero. From equations (24) and 

(26) we find that 

2A4ci sin $ - (Al + A,) cos I) cos a 21' = 0, 

- 2A4$ + (I., + ,Il cos 21)) sin a u' = 0. 

(27 U )  

(27 h) 

Of the two viscous constants entering these equations 
we have proven i., to  be positive, being the rotational 
viscosity of the smectic layers. The other viscous con- 
stant, A1, must at this stage be allowed to adopt any 
value, and we show in the next two sections h o ~ 7  the 
results derived there depend on the ratio ,I,/&. These 
results are used in $ 4  to make a reasonable guess about 
which values A1/,14 can be expected to adopt on physical 
grounds. 

4. The flow alignment angles 
In this section we derive the possible flow alignment 

angles of the system, i.e. we seek the orientations of the 
layer normal for which the shearing torque, equation 
(26), vanishes. To do so involves solving the equations 

(Al + A,) cos * cos a = 0, (28 a)  

(i, + A1 cos 2I)) sin a = 0. (28 b) 

We also discuss how the smectic layers are oriented with 
respect to the shearing plane in the different cases. For 
some of the orientations corresponding to the solutions 
of equations (28), a small fluctuation of a creates a 
shearing torque which tends to rotate a away from the 
starting position. Although the torque is 7ero for such a 
solution, such an orientation is unstable and does not 
represent flow alignment of the system. However, we 
postpone the analysis of the stability of the solutions 
derived until the next section. 

We now solve equations (28) and find readily that in 
terms of I) and a there are three different solutions, 
which we denote S, F and B for reasons which become 
obvious later. We also remember that while A, must 
always be positive, 

(1) The S solution: I) = 4 2 ,  CI = 0. This solution 
corresponds to smectic layers in the bookshelf geometry 
with the layer normal perpendicular to the planc of 
shear. The solution exists for any value of A,, but we 
show in the next section that depending on the value of 
I., in,, the solution exhibits three different types of 
stability. These three solutions are denoted S-,  So and 
S+,  respectively. Physically, these three solutions all have 
the same appearance, and are depicted in the upper part 
of figure 2. 

(2) The F- and F +  solutions: cos21) = -A,/I,,, a = 

nj2. These solutions exist only if /All > ,I4 and are 
depicted to the left in figure 2. The F- solution corre- 
sponds to the choice of negative I v l .  Here the layer 
normal is confined within the shearing plane and the 
layers are tilted forward with a value of tj which is less 

can adopt any value. 
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70 1 Layer alignment in shearjlow of S,LC 

Figure 2. Equilibrium orientations of the smectic layers as 
they appear for different values of the ratio ,Il/&. Not 
all of the depicted solutions to the stationary torque 
equations (28) represent stable equilibria. 

than n/4. the F+ solution corresponds to 1, being 
positive. The layer normal is also here confined within 
the shearing plane and the layer is tilted forward with a 
value of I) in the range 4 4  < I) < n/2. 

( 3 )  The B- and B+ solutions: cos 2$ = -i4/A1, a =  
3n/2. These solutions exist only if I > 1, and are 
depicted to the right in figure 2. The B- solution corre- 
sponds to the choice of negative ,Il. Here the layer 
normal is confined within the shearing plane and the 
layers are tilted backwards with a value of $ which is 
less than 4 4 .  The B +  solution corresponds to A1 being 
positive. The layer normal is also here confined within 
the shearing plane and the layer is tilted backwards with 
a value of I,!I in the range 4 4  < $ < n/2. 

To summarize, in terms of the value of &/A4 one can 
distinguish three different regimes for the solutions of 
equations (28). Within each regime, different solutions 
are feasible as illustrated in figure 3. If A1 < -A4, the 
three solutions S-, B-  and F- are all possible. When 
- A4 < i,, < A4, only the solution So is possible, while for 
A, > 1, the three solutions S', B+ and F+ can be found. 
In the next section we analyse the stability of these 
solutions in order to determine the possible orientations 
of the smectic layers in flow alignment. 

5. Stability analysis 
Figures 2 and 3 depict all possible orientations of the 

smectic layers, for which the shearing torque vanishes. 
We now analyse the stability of these in order to obtain 
the flow alignment angles of the layer normal. 

5.1. Linear stability analysis; the method 
Below we perform a linear stability analysis of equa- 

tions (27) in the following way [ 71. Given an equilibrium 

. .  
STATIONARY SOLUTIONS: U, = a = 0 

I hl -k 0 h4 

I F 

Figure3. Summary and introduction of notations of the 
solutions to the stationary torque equations (28) as they 
are parametrized by the ratio A,/&. 

point (i,b0, a0) for which equations (27) are satisfied, we 
introduce two perturbation angles according to 

*=*o+y ,  a=a,+6. (29 a, b) 

Expanding equations (28) for small values of y and 6 
results in a set of linear differential equations with the 
structure 

i, =f,(y, 61, 8 =fz(y, 6). (30a,b) 

These equations can be expressed in 

(;)=A(;), 

the solution of which can be written 

vector form as 

( 3 1 )  

where yo and 6, are the values of the perturbation for 
t = 0. It is the eigenvalues of the matrix A, denoted by 
us R i  and E ~ ,  which determine the stability of the system 
[7]. If and E~ are real and of the same signs the 
equilibrium point is a node, which is stable if q < 0 and 
unstable if E~ > 0. If and E~ are real and of opposite 
signs, the equilibrium is a saddle point which is unstable. 
If the eigenvalues are complex with a negative real part, 
the equilibrium is a stable focus, while the equilibrium 
is an unstable focus if the real part is positive. When E~ 

and c2 are purely imaginary, the equilibrium point is a 
centre, which is stable. In the case when the equilibrium 
point is a stable node, the expression ( 3 2 )  represents an 
exponential decay towards the equilibrium point, charac- 
terized by two relaxation times, z1 and z2, which are 
given by [ S ]  
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702 T. Carlsson and F. M. Leslie 

5.2. Iritlestigation of the stubility of the equilibrium points 
(1) The S solution: $,=x/2,  x , = O .  Substituting 

equations ( 2 9 )  into equations (27 )  leads to the following 
linearizcd set of equations for the time evolution of y 
and 6. 

I 2" c) 
j' = ~ (a, - a l p ,  s = - - ( I . ~  + ,I~)Y. 

1/24 2i., 
(34u,b)  

The eigenvalues of the matrix A are in this case given 
by 

( 3 5 )  
1.' 

&, = & - (2; ~ a:p2, 
2/24 

and the cquilibrium is a saddle point (unstable) if 
/Al 1 > A4, while it is a centrc (stable) if l A l 1  < A 4 .  Thus 
the solutions S- (A, < -A4) and S+ (Al  > A4) are unstable 
while So ( - A 4  < iL < ,I4) is stable and represents a 
possible flow alignment orientation. 

(2) The F-  and F +  solutions: cos2$, = -A4/&, a, = 

n/2. Here one arrives at the following linearized version 
of equations (27) ,  

and the corresponding eigenvalues of the matrix A are 
given by 

( i 4  + 21) cos $0 
t.1 

21 z1 = - ~ sin 2$0 d ,  c2 = - ~ ~ 

A4 2A4 sin$,, 
(37 a, 6 )  

As $,, is less than x/2, the three quantities sin $,, cos $, 
and sin2$, are all positive and thus the signs of both 
the eigenvalues are opposite to that of A,, implying that 
the solution F +  (A, > i4) is a stable node, while F- 
(i1 < - -A4) is an unstable node. 

( 3 )  The B- and B' solutions: cos2$ = - i 4 / A l ,  
CI,, = 3x/2. Linearization of equations (27) yields 

the eigenvalues of the matrix A being given by 

(39 a. 6 )  

Now the signs of both the eigenvalues are the same as 
that of I-,,  implying that the solution B- ( Iv l  < -Iu4) is 
a stable node, while Bf  ( Iw l  > ,I4) is an unstable node. 

5.3. Summary 
Figure 4 summarizes the results, depicting all possible 

solutions of equations ( 2 8 )  parametrized by the value of 
A,/&. Moving from the left to right in the figure i, 
increases, the two dashed vertical lines corresponding to 
2, equal to +i4. For each valuc of i, there is one or 
three solutions to equations (28), one of thesc being 
stable while the other two (if they exist) being unstable. 

In all cases of the three S solutions will exist, corres- 
ponding to smectic layers in the bookshelf geometry 
with the layer normal perpendicular to the plane of 
shear. Only if I < h, the solution So. which in this 
case is a centre, is stable. In the other two cases? 1 i1 I > &. 
the two solutions S- and S+ are unstable, in each case 
being a saddle point. 

When lbl >, A, there are also the B+ and F ' solutions. 
In the limiting case A1 -, A4. both these solutions repres- 
ent layers which are parallel to the bounding plates. 
When il increases the layers start to tilt, either forwards 
or backwards, with an increasing angle which in the 
limiting case A, --f cc cquals n/4. Of these two solutions 
B+ represents an unstable node while F' is a stable node. 

When i., < -Ib4 the two additional solutions are the 
B- and F-  solutions. In the limiting case A1 + -&, 
both these solutions represent standing layers in the 
bookshelf geometry, the layer normal of which being 
parallel to the velocity of the moving plate. When i., 

-h4 0 h4 hi 
I b 

/z/ 
I .  I i /-/ 

j B /  / 

I I 
I I 

Figure 4. Equilibrium orientations of the smectic layers in 
shear flow. In the figure is indicated which type of stability 
the solutions exhibit and also how the orientations of the 
layers depend on the ratio &I&. 
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Layer alignment in shear flow of SALC 703 

decreases the layers start to tilt, either forwards or 
backwards, with an increasing angle which in the limiting 
case I ,  -+ - 00 equals x/4. Of these two solutions B- 
represents a stable node while F- is an unstable node. 

6. Comparison with disc-like nematics: proposition for 
the value of I., 

Figure 4 presents all possibilities for flow alignment, 
including the corresponding stability conditions. As is 
seen, the value of A, is crucial for the behaviour of the 
system. Before any experimental values of this viscous 
coefficient have been obtained, it is hard to make any 
reliable predictions as to how the system behaves in 
reality. However, by observing that the smectic layers 
can be regarded as infinite discs, one can compare the 
results of figure 4 with the more established behaviour 
of disc-like nematic liquid crystals being subject to shear 
[8,9]. The latter system can exhibit one of two types of 
behaviour, depending on the values of two viscous 
constants, denoted a2 and clg. The director, which in this 
case is the normal to the discs, corresponding to the 
layer normal in the present problem, will for some 
parameter values orient itself perpendicular to the plane 
of shear. This behaviour corresponds to the So solution 
in figure4. For other parameter values, the disc-like 
nematics exhibit flow alignment with the director in the 
plane of shear, the discs making a small angle to  the 
bounding plates. This situation resembles the F + solu- 
tion if one chooses I ,  to be positive and slightly larger 
than A4. 

From consideration of the above discussion of the 
behaviour of disc-like nematics in shear, how would one 
expect a SA liquid crystal to behave in a similar situation? 
One can of course argue that the smectic layers, being 
infinite discs, can only exhibit the So type of solution if 
one demands the smectic layers to stay intact, thus 
favouring the choice 1 i., I < A,. However, if the smectic 
layers break up into smaller units, the system being 
transformed into some kind of discotic smectic, the 
solutions exhibiting a layer normal within the plane of 
shear should also be able to exist (it is beyond the scope 
of this work to discuss the nature of the defects by which 
this inevitably must be accompanied). Comparing with 
the behaviour of a disc-like nematic under similar cir- 
cumstances, one then expects the F + solution, with 
I ,  & A4, to be the one exhibited by the system. How the 
system behaves in reality has to be decided by experi- 
mental investigations, but it seems to us that the sym- 
metry of the system would favour either the so 
( -A4 < A, < i4) or F+ (with I ,  ,>A4) type of behaviour. 
Possibly, as for nematics, both types of behaviour, 
depending on which substance is being studied, could 
be expected to be observed. 

7. Balance of linear momentum: the effective viscosities 
In this section we write down the equations for balance 

of linear momentum in shear flow, employing the result 
to derive the effective viscosities in some special cases. 
By this procedure we can derive a few additional inequal- 
ities for the viscous constants of the system. Consider 
the three cases depicted in figure 5. Either the system is 
in the bookshelf geometry, the layer normal being per- 
pendicular (a) or parallel (b) to the velocity of the moving 
plate, or the smectic layers are assumed to be parallel 
to the bounding plates (c). Although these geometrical 
arrangements of the smectic layers may not all corre- 
spond to the equilibrium situations depicted in figure 4, 
one can always assume some external torque (i.e. bound- 
ary conditions, electric or magnetic fields) lo stabilize 
the assumed configuration in the presence of flow. 

Moving the upper plate in the y-direction, the equa- 
tion for balance of linear momentum (8) reads in the 
steady state, 

f12z+z = 0, (40) 

t,, = z, (41 1 
which can be integrated to read 

* 

the integration constant T being the force per unit area 
applied to the moving plate. The stress tensor, defined 
by equations (15) and (16), together with equations 
(lo)-( 13) and the velocity field (19) now gives 

where qi is the effective viscosity, which for the three 
different cases studied is given by 

a = 4: qc = +(po + p 2  - 22,  + A,) > 0, (43 c) 

I 

Z 

Figure 5. Definition of the effective viscosities qa (bookshelf 
geometry: layer normal perpendicular to shear plane), qb 
(bookshelf geometry: layer normal parallel to the fluid 
velocity) and qc (layers parallel to the bounding plates: 
layer normal parallel to the shear). 
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the inequalities in equations (43) stemming from the fact 
that the velocity gradient 0’ and the driving force z must 
be of the same sign. We take the inequalities (43 b) and 
(43 c) a little further by rewriting them as 

21, > - (po + p2 + Ad, 2 4  < pO + p2 + 1,. (44a,b) 

If these inequalities both hold at the same time, one 
must demand 

po + p2 + i 4  > 0. 

I2l11 < P O  + PL2 + j-4. 

(45) 

(46) 

Equations (44) can be summarized as 

Thus some of the inequalities, which on thermodynamic 
grounds must be fulfilled by the viscous constants, can 
be summarized as 

(47 a, b, c) A4 > 0, PO > 0, p0 + y2 + ib4 > 0, 

(47 d )  

8. Discussion 
In this paper we have discussed the macroscopic flow 

properties of the S, phase with the stress tensor given 
by equations ( 15) and (16) as a starting point. We have 
assumed the orientation of the smectic layers to be 
arbitrary, an assumption which in some cases leads to a 
flow for which matter has to be transported between the 
smectic layers. This assumption might place some restric- 
tion on the validity of the results thus derived. However, 
we believe that, as a starting point for investigating the 
dynamics of the SA phase, the present approach is a 
reasonable one. Also, regarding the possibility for the 
smectic layers to break up into smaller units, as was 

discussed in 5 5.3, the apparent discrepancy between the 
smectic layering and the flow field becomes weaker. 

With the above limitations in mind, the possible 
orientations of free smectic layers in shear flow are 
summarized in figure 4, from which one notices that the 
results depend critically on the viscosity coefficient JL1. 
From a comparison with the behaviour of disc-like 
nematics in shear flow, one observes similarities which 
can be used to make predictions of the value of &. Our 
assumption is A, > -A4, possibly most likely with 2,s A, 
being valid. From equation (47 d), the value of A1 is seen 
also to have an upper limit due to  the inequality IA, 1 < 
i ( p o + ~ 2 + A 4 ) .  As the value of p 2  is still completely 
undetermined, one cannot draw too strong conclusions 
from this inequality; however the assumption ,Il ,> A4 
remains a realistic choice as well as / I ,  1 < A4. In the end 
however, experiments will decide which values the 
viscous constants adopt in reality. 
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